Investigation of catechin’s anti-inflammatory activity: A bioinformatics and molecular docking study
Abstract
Background: Inflammation plays a key role in the progression of many chronic diseases. As a country with rich biodiversity, Indonesia offers numerous phytochemicals with potential for drug development, including catechin, a natural compound with anti-inflammatory properties.
Objective: This study aimed to identify potential anti-inflammatory targets of catechin and evaluate its inhibitory potency through molecular docking simulations.
Methods: Data acquisition and refinement were conducted using the NCBI, STRING, and STITCH databases, with intersections identified through Venn diagrams. Molecular docking was performed using AutoDockTools 1.5.6, and interactions were visualized with BIOVIA Discovery Studio.
Results: Bioinformatics analysis predicted that catechin inhibits three pro-inflammatory proteins: COX-2, HSP90, and IL-2. Catechin’s inhibitory potential was indicated by negative binding energies and interactions with amino acid residues critical for target protein activity. Among the targets, IL-2 exhibited the lowest binding energy with catechin (-5.12 kcal/mol), suggesting it as the primary anti-inflammatory target. However, catechin’s binding affinity was lower than that of the native ligand (-11.78 kcal/mol).
Conclusion: IL-2 is predicted to be the primary target for catechin’s anti-inflammatory activity. Structural modifications of catechin are recommended to enhance its binding affinity and therapeutic potential.
References
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget. 2018;9: 7204-7218. https://doi.org/10.18632/oncotarget.23208
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct Target Ther. 2024;9: 53. https://doi.org/10.1038/s41392-024-01757-9
Dewi TS, Puspawati, Suarya P. Antiinflammatory Activity of Eter Extract Tenggulun Bones (Protium javanicum Burm) on Edema in Wistar Rats Induced with Caragenan. Chemical Journal. 2015;9: 13-19.
Kalra S, Malik R, Singh G, Bhatia S, Al-Harrasi A, Mohan S, et al. Pathogenesis and Management of Traumatic Brain Injury (TBI): Role of Neuroinflammation and Anti-inflammatory Drugs. Inflammopharmacology. 2022;30: 1153-1166. https://doi.org/10.1007/s10787-022-01017-8
BRIN Public Relations. Indonesia has 30,000 Plant Species and Marine Resources for Herbal Medicine. In: National Research and Innovation Agency [Internet]. Feb 2024 [cited 14 Dec 2024]. Available: https://www.brin.go.id/en/news/117492/indonesia-has-30000-plant-species-and-marine-resources-for-herbal-medicine
Fan F-Y, Sang L-X, Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules. 2017;22: 484. https://doi.org/10.3390/molecules22030484
Mahendra I, Azhar M. Extraction and Characterization of Catechins from Gambir (Uncaria Gambir Roxb). Chemistry Journal of Universitas Negeri Padang. 2022;11: 5-7. https://doi.org/10.24036/p.v11i1.113262
Hodges J, Zeng M, Cao S, Pokala A, Rezaei S, Sasaki G, et al. Catechin-Rich Green Tea Extract Reduced Intestinal Inflammation and Fasting Glucose in Metabolic Syndrome and Healthy Adults: A Randomized, Controlled, Crossover Trial. Curr Dev Nutr. 2022;6: 981. https://doi.org/10.1093/cdn/nzac068.010
Tuo Y, Lu X, Tao F, Tukhvatshin M, Xiang F, Wang X, et al. The Potential Mechanisms of Catechins in Tea for Anti-Hypertension: An Integration of Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Foods. 2024;13: 2685. https://doi.org/10.3390/foods13172685
Kim JM, Heo HJ. The Roles of Catechins in Regulation of Systemic Inflammation. Food Sci Biotechnol. 2022;31: 957-970. https://doi.org/10.1007/s10068-022-01069-0
Shahid A, Ali R, Ali N, Hasan SK, Bernwal P, Afzal SM, et al. Modulatory Effects of Catechin Hydrate Against Genotoxicity, Oxidative Stress, Inflammation and Apoptosis Induced by Benzo(a)pyrene in Mice. Food and Chemical Toxicology. 2016;92: 64-74. https://doi.org/10.1016/j.fct.2016.03.021
Zhang X, Huo Z, Jia X, Xiong Y, Li B, Zhang L, et al. (+)-Catechin Ameliorates Diabetic Nephropathy Injury by Inhibiting Endoplasmic Reticulum Stress-Related NLRP3 Mediated Inflammation. Food Funct. 2024;15: 5450-5465. https://doi.org/10.1039/D3FO05400D
Cheng A-W, Tan X, Sun J-Y, Gu C-M, Liu C, Guo X. Catechin Attenuates TNF-α Induced Inflammatory Response via AMPK-SIRT1 Pathway in 3T3-L1 Adipocytes. PLoS One. 2019;14: e0217090. https://doi.org/10.1371/journal.pone.0217090
Kuang W, Yang J, Liu Z, Zeng J, Xia X, Chen X, et al. Catechin Mediates Ferroptosis to Exert an Anti-Inflammatory Effect on RAW 264.7 Cells. Foods. 2022;11: 1572. https://doi.org/10.3390/foods11111572
Ganeshpurkar A, Saluja A. In Silico Interaction of Catechin with some Immunomodulatory Targets: A Docking Analysis. Indian J Biotechnol. 2018;17: 626-631. Available: www.python.com.
Patil P, Shegokar N, Gaikwad S, Bharti S. Molecular Docking Study of Vanillic Acid and Catechin Hydrate as Anti-inflammatory and Antioxidant Agents Towards PPAR-γ and Glutathione S-Transferase Omega-1 Complex Agonists. Alochana Journal. 2024;13: 112-125. Available: http://www.resb.org
Belakredar A, Boudou F, Abdelghani S. Exploring the Anti-Inflammatory Potential of Phytochemicals from Anvillea radiata: In Vitro Assay, Molecular Docking, and Molecular Dynamics Simulations. Advanced Research in Life Sciences. 2024;8: 1-14. https://doi.org/10.2478/arls-2024-0001
Xia X. Bioinformatics and Drug Discovery. Curr Top Med Chem. 2017;17: 1709-1726. https://doi.org/10.2174/1568026617666161116143440
Hermawan A, Khumaira A, Ikawati M, Putri H, Jenie RI, Angraini SM, et al. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput Biol Chem. 2021;90. https://doi.org/10.1016/j.compbiolchem.2020.107427
Badkas A, De Landtsheer S, Sauter T. Construction and Contextualization Approaches for Protein-Protein Interaction Networks. Comput Struct Biotechnol J. 2022;20: 3280-3290. https://doi.org/10.1016/j.csbj.2022.06.040
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. CytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Syst Biol. 2014;8: 1-7. https://doi.org/10.1186/1752-0509-8-S4-S11
Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and Centrality in Protein Networks. Nature. 2001;411: 41-42. https://doi.org/10.1038/35075138
Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et al. Gaussian 09. In: The Royal Society of Chemistry. 2016.
Ramadhan RG, Imelda, Kusuma RT, Phameswari DS. Analisis Aktivitas Antioksidan dan Sitotoksik Senyawa Pelargonidin Sebagai Kandidat Obat Menggunakan Metode DFT (Density Functional Theory). Jurnal Kimia Saintek dan Pendidikan. 2021;5: 110-120.
Rosita Sari B, Nur Auli W, Julia Saputri V, Dinata Saputri O, Putriyana Boru Tumanggor A, Anggun Ferlinda D, et al. In Silico Study of the Anticancer Potential of Lymphocytic Leukemia Indole Alkaloid Compounds against BCL-2 Protein. Journal of Science and Health. 2023;5: 802-809. https://doi.org/10.25026/jsk.v5i5.1880
SYSTEMES D. BIOVIA Discovery Studio Dassault Syst mes BIOVIA, Discovery Studio Modeling Environment. In: Dassault Syst mes. 2016.
Li H, Raman CS, Glaser CB, Blasko E, Young TA, Parkinson JF, et al. Crystal Structures of Zinc-free and -bound Heme Domain of Human Inducible Nitric-oxide Synthase. Journal of Biological Chemistry. 1999;274: 21276-21284. https://doi.org/10.1074/jbc.274.30.21276
Fischmann TO, Hruza A, Niu X Da, Fossetta JD, Lunn CA, Dolphin E, et al. Structural Characterization of Nitric Oxide Synthase Isoforms Reveals Striking Active-Site Conservation. Nat Struct Biol. 1999;6: 233-242. https://doi.org/10.1038/6675
Liu Y, Kong H, Cai H, Chen G, Chen H, Ruan W. Progression of the PI3K/Akt Signaling Pathway in Chronic Obstructive Pulmonary Disease. Front Pharmacol. 2023;14. https://doi.org/10.3389/fphar.2023.1238782
Wu W-I, Voegtli WC, Sturgis HL, Dizon FP, Vigers GPA, Brandhuber BJ. Crystal Structure of Human AKT1 with an Allosteric Inhibitor Reveals a New Mode of Kinase Inhibition. PLoS One. 2010;5: e12913. https://doi.org/10.1371/journal.pone.0012913
Li R, Xie J, Xu W, Zhang L, Lin H, Huang W. LPS-Induced PTGS2 Manipulates the Inflammatory Response Through Trophoblast Invasion in Preeclampsia Via NF-κB pathway. Reprod Biol. 2022;22: 100696. https://doi.org/10.1016/j.repbio.2022.100696
Rouzer CA, Marnett LJ. Cyclooxygenases: Structural and Functional Insights. J Lipid Res. 2009;50: S29-S34. https://doi.org/10.1194/jlr.R800042-JLR200
Rowlinson SW, Kiefer JR, Prusakiewicz JJ, Pawlitz JL, Kozak KR, Kalgutkar AS, et al. A Novel Mechanism of Cyclooxygenase-2 Inhibition Involving Interactions with Ser-530 and Tyr-385. Journal of Biological Chemistry. 2003;278: 45763-45769. https://doi.org/10.1074/jbc.M305481200
Ben Abdallah H, Bregnhøj A, Ghatnekar G, Iversen L, Johansen C. Heat Shock Protein 90 Inhibition Attenuates Inflammation in Models of Atopic Dermatitis: a Novel Mechanism of Action. Front Immunol. 2024;14. https://doi.org/10.3389/fimmu.2023.1289788
Woodhead AJ, Angove H, Carr MG, Chessari G, Congreve M, Coyle JE, et al. Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design. J Med Chem. 2010;53: 5956-5969. https://doi.org/10.1021/jm100060b
Ding X, Meng C, Dong H, Zhang S, Zhou H, Tan W, et al. Extracellular Hsp90α, which Participates in Vascular Inflammation, is a Novel Serum Predictor of Atherosclerosis in Type 2 Diabetes. BMJ Open Diabetes Res Care. 2022;10: e002579. https://doi.org/10.1136/bmjdrc-2021-002579
Spel L, Hou C, Theodoropoulou K, Zaffalon L, Wang Z, Bertoni A, et al. HSP90β Controls NLRP3 Autoactivation. Sci Adv. 2024;10. https://doi.org/10.1126/sciadv.adj6289
Lima CR, Antunes D, Caffarena E, Carels N. Structural Characterization of Heat Shock Protein 90β and Molecular Interactions with Geldanamycin and Ritonavir: A Computational Study. Int J Mol Sci. 2024;25: 8782. https://doi.org/10.3390/ijms25168782
Álvarez-Reguera C, Prieto-Peña D, Herrero-Morant A, Sánchez-Bilbao L, Batlle-López A, Fernández-Luis S, et al. Features of Immune Mediated Diseases in JAK2 (V617F)-Positive Myeloproliferative Neoplasms and the Potential Therapeutic Role of JAK Inhibitors. Eur J Intern Med. 2024;123: 102-106. https://doi.org/10.1016/j.ejim.2023.11.019
Davis RR, Li B, Yun SY, Chan A, Nareddy P, Gunawan S, et al. Structural Insights into JAK2 Inhibition by Ruxolitinib, Fedratinib, and Derivatives Thereof. J Med Chem. 2021;64: 2228-2241. https://doi.org/10.1021/acs.jmedchem.0c01952
Kudva A, Modak S. Immunotherapy for Neuroblastoma. Neuroblastoma. Elsevier; 2019. pp. 147-173. https://doi.org/10.1016/B978-0-12-812005-7.00009-6
Thanos CD, Randal M, Wells JA. Potent Small-Molecule Binding to a Dynamic Hot Spot on IL-2. J Am Chem Soc. 2003;125: 15280-15281. https://doi.org/10.1021/ja0382617
Rastogi S, Joshi A, Sato N, Lee S, Lee M-J, Trepel JB, et al. An Update on the Status of HSP90 Inhibitors in Cancer Clinical Trials. Cell Stress Chaperones. 2024;29: 519-539. https://doi.org/10.1016/j.cstres.2024.05.005

Copyright (c) 2024 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.