Development of RNA interference-based therapy for rare genetic diseases
Abstract
In December 2022, the Indonesian Ministry of Health projected that rare diseases might affect 8–10% of the population, equating to approximately 27 million people. These diseases, often congenital, are linked to genetic inheritance or mutations, leading to structural or functional defects. Despite advancements in diagnostic and treatment methods, many rare diseases remain challenging for healthcare practitioners. RNA interference (RNAi) presents a promising therapeutic approach by enabling the selective inhibition of genes responsible for genetic disorders. RNAi employs small RNA molecules, such as small interfering RNA (siRNA) and microRNA (miRNA), to bind specific mRNA molecules and prevent their translation into proteins. Current research showed that RNAi-based therapies have the potential to treat various genetic diseases, including acute hepatic porphyria (AHP) and primary hyperoxaluria type 1 (PH1). However, the mechanisms of RNAi in hereditary disorders like AHP and PH1 require further documentation. RNAi offers several advantages, including gene-specific targeting, versatility in treating diverse genetic disorders, and scalability for mass production. Nonetheless, challenges remain, such as side effects, difficulties in targeting specific cells, and high development cost. Despite these obstacles, RNAi-based therapy holds significant potential for revolutionize the treatment of genetic disorders.
References
Iourov IY, Vorsanova SG, Yurov YB. Pathway-based classification of genetic diseases. Mol Cytogenet. 2019;12: 1-5. https://doi.org/10.1186/s13039-019-0418-4
Pogue RE, Cavalcanti DP, Shanker S, Andrade R V., Aguiar LR, de Carvalho JL, et al. Rare genetic diseases: update on diagnosis, treatment and online resources. Drug Discov Today. 2018;23: 187-195. https://doi.org/10.1016/j.drudis.2017.11.002
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391: 806-811. https://doi.org/10.1038/35888
Tijsterman M, Plasterk RHA. Dicers at RISC: The mechanism of RNAi. Cell. 2004;117: 1-3. https://doi.org/10.1016/S0092-8674(04)00293-4
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87: 108-119. https://doi.org/10.1016/j.addr.2015.01.007
Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J a J Postdr Res Postdr Aff. 2016;4: 35-50. https://doi.org/10.14304/SURYA.JPR.V4N7.5
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411: 494-498. https://doi.org/10.1038/35078107
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev. 2022;182: 114113. https://doi.org/10.1016/j.addr.2022.114113
Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457: 396-404. https://doi.org/10.1038/nature07754
Ranasinghe P, Addison ML, Dear JW, Webb DJ. Small interfering RNA: Discovery, pharmacology and clinical development-An introductory review. Br J Pharmacol. 2023;180: 2697-2720. https://doi.org/10.1111/bph.15972
De Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6: 443-453. https://doi.org/10.1038/nrd2310
Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457: 426-433. https://doi.org/10.1038/nature07758
Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids. 2015;4: e252. https://doi.org/10.1038/mtna.2015.23
Young SWS, Stenzel M, Yang J-L. Nanoparticle-siRNA: A potential cancer therapy? Crit Rev Oncol Hematol. 2016;98: 159-169. https://doi.org/10.1016/j.critrevonc.2015.10.015
Zhang P, An K, Duan X, Xu H, Li F, Xu F. Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov Today. 2018;23: 900-911. https://doi.org/10.1016/j.drudis.2018.01.042
Price C, Chen J. MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes Dis. 2014;1: 53-63. https://doi.org/10.1016/j.gendis.2014.06.004
Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. Nanomater (Basel, Switzerland). 2017;7: 77. https://doi.org/10.3390/nano7040077
Schmit M, Bielinsky A-K. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci. 2021;22: 911. https://doi.org/10.3390/ijms22020911
Ramanujam V-MS, Anderson KE. Porphyria Diagnostics-Part 1: A Brief Overview of the Porphyrias. Curr Protoc Hum Genet. 2015;86: 17.20.1-17.20.26. https://doi.org/10.1002/0471142905.hg1720s86
Wang B. The acute hepatic porphyrias. Transl Gastroenterol Hepatol. 2021;6: 24. https://doi.org/10.21037/tgh-2020-01
Anderson KE, Bloomer JR, Bonkovsky HL, Kushner JP, Pierach CA, Pimstone NR, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med. 2005;142: 439-450. https://doi.org/10.7326/0003-4819-142-6-200503150-00010
Pallet N, Karras A, Thervet E, Gouya L, Karim Z, Puy H. Porphyria and kidney diseases. Clin Kidney J. 2018;11: 191-197. https://doi.org/10.1093/ckj/sfx146
Bissell DM, Wang B. Acute Hepatic Porphyria. J Clin Transl Hepatol. 2015;3: 17-26. https://doi.org/10.14218/JCTH.2014.00039
Wang B, Ventura P, Takase K-I, Thapar M, Cassiman D, Kubisch I, et al. Disease burden in patients with acute hepatic porphyria: experience from the phase 3 ENVISION study. Orphanet J Rare Dis. 2022;17: 327. https://doi.org/10.1186/s13023-022-02463-x
Bonkovsky HL, Guo J-T, Hou W, Li T, Narang T, Thapar M. Porphyrin and heme metabolism and the porphyrias. Compr Physiol. 2013;3: 365-401. https://doi.org/10.1002/cphy.c120006
Vinchi F, Ingoglia G, Chiabrando D, Mercurio S, Turco E, Silengo L, et al. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450. Gastroenterology. 2014;146: 1325-1338. https://doi.org/10.1053/j.gastro.2014.01.053
Grottelli S, Annunziato G, Pampalone G, Pieroni M, Dindo M, Ferlenghi F, et al. Identification of Human Alanine-Glyoxylate Aminotransferase Ligands as Pharmacological Chaperones for Variants Associated with Primary Hyperoxaluria Type 1. J Med Chem. 2022;65: 9718-9734.https://doi.org/10.1021/acs.jmedchem.2c00142
Wang X, Danese D, Brown T, Baldwin J, Sajeev G, Cook EE, et al. Primary Hyperoxaluria Type 1 Disease Manifestations and Healthcare Utilization: A Multi-Country, Online, Chart Review Study. Front Med. 2021;8: 1-9. https://doi.org/10.3389/fmed.2021.703305
Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369: 649-658. https://doi.org/10.1056/NEJMra1301564
Fargue S, Acquaviva Bourdain C. Primary hyperoxaluria type 1: pathophysiology and genetics. Clin Kidney J. 2022;15: i4-i8. https://doi.org/10.1093/ckj/sfab217
Cochat P, Hulton S-A, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, et al. Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant. 2012;27: 1729-1736. https://doi.org/10.1093/ndt/gfs078
Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O'Riordan WD, Cochat P, et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl J Med. 2021;384: 1216-1226. https://doi.org/10.1056/NEJMoa2021712
Urits I, Swanson D, Swett MC, Patel A, Berardino K, Amgalan A, et al. A Review of Patisiran (ONPATTRO®) for the Treatment of Polyneuropathy in People with Hereditary Transthyretin Amyloidosis. Neurol Ther. 2020;9: 301-315. https://doi.org/10.1007/s40120-020-00208-1
Scott LJ. Givosiran: First Approval. Drugs. 2020;80: 335-339. https://doi.org/10.1007/s40265-020-01269-0
Scott LJ, Keam SJ. Lumasiran: First Approval. Drugs. 2021;81: 277-282. https://doi.org/10.1007/s40265-020-01463-0
Bustad HJ, Kallio JP, Vorland M, Fiorentino V, Sandberg S, Schmitt C, et al. Acute Intermittent Porphyria: An Overview of Therapy Developments and Future Perspectives Focusing on Stabilisation of HMBS and Proteostasis Regulators. Int J Mol Sci. 2021;22: 675. https://doi.org/10.3390/ijms22020675
Syed YY. Givosiran: A Review in Acute Hepatic Porphyria. Drugs. 2021;81: 841-848. https://doi.org/10.1007/s40265-021-01511-3
Balwani M, Sardh E, Ventura P, Peiró PA, Rees DC, Stölzel U, et al. Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria. N Engl J Med. 2020;382: 2289-2301. https://doi.org/10.1056/NEJMoa1913147
Ventura P, Bonkovsky HL, Gouya L, Aguilera-Peiró P, Montgomery Bissell D, Stein PE, et al. Efficacy and safety of givosiran for acute hepatic porphyria: 24-month interim analysis of the randomized phase 3 ENVISION study. Liver Int Off J Int Assoc Study Liver. 2022;42: 161-172. https://doi.org/10.1111/liv.15090
Frishberg Y, Deschênes G, Groothoff JW, Hulton S-A, Magen D, Harambat J, et al. Phase 1/2 Study of Lumasiran for Treatment of Primary Hyperoxaluria Type 1: A Placebo-Controlled Randomized Clinical Trial. Clin J Am Soc Nephrol. 2021;16: 1025-1036. https://doi.org/10.2215/CJN.14730920
Liebow A, Li X, Racie T, Hettinger J, Bettencourt BR, Najafian N, et al. An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria. J Am Soc Nephrol. 2017;28: 494-503. https://doi.org/10.1681/ASN.2016030338
D'Ambrosio V, Ferraro PM. Lumasiran in the Management of Patients with Primary Hyperoxaluria Type 1: From Bench to Bedside. Int J Nephrol Renovasc Dis. 2022;15: 197-206. https://doi.org/10.2147/IJNRD.S293682

Copyright (c) 2024 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.