Identification of cardiac premature senescence markers through GEO database interaction approach

Keywords: p53, database GEO, premature cardiac senescence, GEO database

Abstract

Background: Cardiomyocytes are cardiac muscle cells where premature senescence can occur. The availability of in silico research regarding premature senescence in cardiomyocytes is still limited.

Purpose: This in silico research aims to identify marker of cardiac premature senescence through the GEO database interaction approach.

Methods: This research used the GEO database with the GeneCards website approach using four keywords: premature senescence AND cardiovascular AND cardiomyocytes AND p53 followed by Cytoscape 3.9.1 analysis and StringDB analysis.

Results: From 1,046 proteins obtained, analyzed by using Cytoscape Tools series 3.9.1 resulted to 100 proteins having the highest score and continued with StringDB analysis with 16 proteins.

Conclusion: From the GeneCards, Cytoscape, and StringDB data, analysis of protein interactions in cardiac premature senescence showed that the protein-protein interactions with the highest scores were TP53, CDK2, and PTEN.

References

Avelar RA, Ortega JG, Tacutu R, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. Apr 7 2020;21(1):91. https://doi.org/10.1186/s13059-020-01990-9

Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. Feb 2021;22(2):75-95. https://doi.org/10.1038/s41580-020-00314-w

Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. Apr 2021;78(7):3333-3354. https://doi.org/10.1007/s00018-020-03746-x

Martínez-Zamudio RI, Herbig U. Cell Senescence. Encyclopedia of Gerontology and Population Aging2019:1-15. https://doi.org/10.1007/978-3-319-69892-2_38-1

Admasu TD, Rae M, Stolzing A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Rev. Sep 2021;70:101412. https://doi.org/10.1016/j.arr.2021.101412

Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. Apr 2 2018;128(4):1238-1246. https://doi.org/10.1172/JCI95148

Dodig S, Cepelak I, Pavic I. Hallmarks of senescence and aging. Biochem Med (Zagreb). Oct 15 2019;29(3):030501. https://doi.org/10.11613/BM.2019.030501

Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel). Sep 14 2020;9(9). https://doi.org/10.3390/antiox9090864

Chu X, Wen J, Raju RP. Rapid senescence-like response after acute injury. Aging Cell. Sep 2020;19(9):e13201. https://doi.org/10.1111/acel.13201

Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:645593. https://doi.org/10.3389/fcell.2021.645593

Anderson R, Lagnado A, Maggiorani D, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. Mar 1 2019;38(5). https://doi.org/10.15252/embj.2018100492

Argüello-Miranda O, Marchand A, Kennedy T, Russo MAX, Noh J. Cell cycle-independent integration of stress signals promotes NonG1/G0 quiescence entry 2021. https://doi.org/10.1101/2021.03.13.434817

Hoffmann MJ, Meneceur S, Hommel K, Schulz WA, Niegisch G. Downregulation of cell cycle and checkpoint genes by class I HDAC inhibitors limits synergism with G2/M checkpoint inhibitor MK-1775 in bladder cancer cells. Genes (Basel). Feb 11 2021;12(2). https://doi.org/10.3390/genes12020260

Ikeda S, Zablocki D, Sadoshima J. The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol. Dec 14 2021;165:1-8. https://doi.org/10.1016/j.yjmcc.2021.12.006

Avilova KX MA. Risk factors for cardiovascular diseases. Journal of Advanced Research and Stability. 2022;Vol 2, issue 1.

Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. Jul 1 2019;1865(7):1802-1809. https://doi.org/10.1016/j.bbadis.2018.08.008

Aliezsa Esthi Kusuma S, Dwita Oktaria. Pengaruh Pemberian Thymoquinone Terhadap Gambaran Histopatologi Jantung Tikus Putih (Rattus norvegicus) Galur Sprague dawley Yang Diinduksi Asap Rokok. Majority. 2019;8:84-89. https://doi.org/10.19109/intelektualita.v8i1.4232

Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. Apr 2021;20(4):e13338. https://doi.org/10.1111/acel.13338

Kaplan A, Abidi E, Ghali R, Booz GW, Kobeissy F, Zouein FA. Functional, Cellular, and Molecular Remodeling of the Heart under Influence of Oxidative Cigarette Tobacco Smoke. Oxid Med Cell Longev. 2017;2017:3759186. https://doi.org/10.1155/2017/3759186

Katsuumi G, Shimizu I, Yoshida Y, Minamino T. Vascular senescence in cardiovascular and metabolic diseases. Front Cardiovasc Med. 2018;5:18. https://doi.org/10.3389/fcvm.2018.00018

Kartha CC. Cardiomyocytes In Health And Diseases. Springer. 2021. https://doi.org/10.1007/978-3-030-85536-9

Jangid A, Malik MZ, Ramaswamy R, Singh RKB. Transition and identification of pathological states in p53 dynamics for therapeutic intervention. Sci Rep. Jan 27 2021;11(1):2349. https://doi.org/10.1038/s41598-021-82054-1

Tanaka Y, Takahashi A. Senescence-associated extracellular vesicle release plays a role in senescence-associated secretory phenotype (SASP) in age-associated diseases. J Biochem. Mar 5 2021;169(2):147-153. https://doi.org/10.1093/jb/mvaa109

Kirkland JL, Tchkonia T. Cellular Senescence: A Translational Perspective. EBioMedicine. Jul 2017;21:21-28. https://doi.org/10.1016/j.ebiom.2017.04.013

Hinds P, Pietruska J. Senescence and tumor suppression. F1000Res. 2017;6:2121. https://doi.org/10.12688/f1000research.11671.1

Beck J, Turnquist C, Horikawa I, Harris C. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis. Aug 12 2020;41(8):1017-1029. https://doi.org/10.1093/carcin/bgaa071

Fujita K. p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. Int J Mol Sci. Nov 29 2019;20(23). https://doi.org/10.3390/ijms20236023

Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules. Mar 8 2020;10(3). https://doi.org/10.3390/biom10030420

Shimizu I, Minamino T. Cellular senescence in cardiac diseases. J Cardiol. Oct 2019;74(4):313-319. https://doi.org/10.1016/j.jjcc.2019.05.002

Sun X, Feinberg MW. Vascular endothelial senescence: pathobiological insights, emerging long noncoding RNA targets, challenges and therapeutic opportunities. Front Physiol. 2021;12:693067. https://doi.org/10.3389/fphys.2021.693067

Xu S, Wu W, Huang H, et al. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway. Aging Cell. Jun 2019;18(3):e12918. https://doi.org/10.1111/acel.12918

Published
2024-08-04
How to Cite
Susantiningsih, T., Prijanti, A. R., Hardiany, N. S., & Fadilah. (2024). Identification of cardiac premature senescence markers through GEO database interaction approach . Acta Biochimica Indonesiana, 7(1), 110. https://doi.org/10.32889/actabioina.110