Effect of turmeric extract on glutathione levels in diclofenac-induced oxidative stress in rats
Abstract
Background: Glutathione (GSH), the primary endogenous antioxidant, protects cells against oxidative stress. Diclofenac sodium, a commonly prescribed nonsteroidal anti-inflammatory drug (NSAID), depletes GSH through hepatic metabolic byproducts, causing oxidative damage.
Objective: To evaluate the protective effect of turmeric extract (Curcuma longa L.) on glutathione levels in rats subjected to diclofenac-induced oxidative stress.
Methods: Twenty-eight male Wistar rats were randomly divided into four groups (n=7): normal control, negative control (diclofenac sodium 10 mg/kg body weight [BW]), and two treatment groups receiving turmeric extract (100 mg/kg BW or 200 mg/kg BW) following diclofenac induction. Diclofenac was administered for 7 days; turmeric extract was given orally for 14 days. Cardiac blood glutathione levels were measured spectrophotometrically.
Results: Turmeric extract significantly increased glutathione levels in diclofenac-induced rats compared to negative controls (p<0.05). The 200 mg/kg BW dose produced superior protection, elevating GSH levels significantly above all groups (p<0.001), demonstrating a dose-dependent antioxidant effect.
Conclusion: Turmeric extract demonstrates significant dose-dependent antioxidant activity against diclofenac-induced oxidative stress, with the 200 mg/kg BW dose achieving superior GSH elevation (p < 0.001), suggesting potential as a protective agent against NSAID-induced oxidative damage.
References
Meo D, Venditti S. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/9829176
Martemucci G, Costagliola C, Mariano M, Napolitano L and 'alessandro D. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen. 2022;2: 48-78. https://doi.org/10.3390/oxygen2020006
Gulcin I. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94: 651-715. https://doi.org/10.1007/s00204-020-02689-3
Vašková J, Kočan L, Vaško L, Perjési P. Glutathione-related enzymes and proteins: A review. Molecules. 2023;28: 1447. https://doi.org/10.3390/molecules28031447
Averill-Bates DA. The antioxidant glutathione. Vitamins and Hormones. Elsevier; 2023. pp. 109-141. https://doi.org/10.1016/bs.vh.2022.09.002
Mirzaee SA, Noorimotlagh Z, Ahmadi Mehdi and Rahim F, Martinez SS, Nourmohammadi A, Jaafarzadeh N. The possible oxidative stress and DNA damage induced in Diclofenac-exposed Non-target organisms in the aquatic environment: A systematic review. Ecol Indic. 2021;131: 108172. https://doi.org/10.1016/j.ecolind.2021.108172
Hasanuzzaman M, Nahar K, Anee Taufika Islam and Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants. 2017;23: 249-268. https://doi.org/10.1007/s12298-017-0422-2
Suprihatin T, Rahayu S, Rifa'i M, Widyarti S. Senyawa pada Serbuk Rimpang Kunyit (Curcuma longa L.) yang Berpotensi sebagai Antioksidan. Bul Anat Dan Fisiol. 2020;5: 35-42. https://doi.org/10.14710/baf.5.1.2020.35-42
Setyowati A, Suryani L. The Increase of Curcuminoida Content and Antioxidative Activity of Temulawak and Turmeric Instant Beverages. AGRITECH. 2013.
El-Maddawy ZK, El-Sayed YS. Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. Environmental Science and Pollution Research. 2018;25: 3468-3479. https://doi.org/10.1007/s11356-017-0750-3
Sedky R, Taha N, Mandour A, Lebda M, Hashem A. Potential Protective Effect of Curcumin on Paracetamol Model of Liver Injury in Rats. Alex J Vet Sci. 2019;63. https://doi.org/10.5455/ajvs.63350
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Biological Activities and Modern Pharmaceutical Forms. Curcumin: Biological Activities and Modern Pharmaceutical Forms Antibiotics. 2022;11. https://doi.org/10.3390/antibiotics11020135
Kumar S, Singh NN, Singh A, Singh N, Sinha RK. Use of Curcuma longa L. extract to stain various tissue samples for histological studies. Ayu. 2014;35: 447-451. https://doi.org/10.4103/0974-8520.159027
Iflahah MA, Puspawati NM, Suaniti NM. Theobroma cacao L.) Dalam menurunkan kadar 8-hidroksi-2'-deoksiguanosin dalam urin tikus setelah terpapar etanol. 2016;4.
Ramadhan S, Sri Iswari R, Marianti A. Pengaruh Ekstrak Daun Sirih Merah (Piper crocatum Ruiz & Pav.) terhadap Kadar Glukosa Darah dan Kadar Glutation Peroksidase Tikus Jantan Hiperglikemik. Biotropika. 2019;7: 1-10. https://doi.org/10.21776/ub.biotropika.2019.007.01.01
Insani N, Kamaluddin H, Swanny S. Perbedaan Kadar Glutation (GSH) Hepar Tikus Putih Jantan (Rattus norvegicus) yang diinduksi Parasetamol Dosis Toksik dengan Pemberian Ekstrak Daun Kelor (Moringa oleifera). Jurnal Ilmiah Universitas Batanghari Jambi. 2020;20. https://doi.org/10.33087/jiubj.v20i1.881
Handayani D, Halimatushadyah E, Krismayadi K. Standarisasi Mutu Simplisia Rimpang Kunyit Dan Ekstrak Etanol Rimpang Kunyit (Curcuma longa Linn). pharmgen. 2023;2: 43-59. https://doi.org/10.56359/pharmgen.v2i1.173
Kaban K, Sunarti S. Ekstrak rimpang kunyit (curcuma longa linn) menurunkan penyakit perlemakan hati non-alkoholik. Biolink (j biol lingkung ind kesehat). 2019;5: 123-130. https://doi.org/10.31289/biolink.v5i2.1800
Fernando A, Rahmadhani AW, Susanti E. Pengaruh Proses Pengeringan Terhadap Kadar Total Fenolik Dan Flavonoid Ekstrak Metanol Kubis Ungu. Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta. 2023;2: 102-109. https://doi.org/10.47233/jppie.v2i1.796
Kusbiantoro D, Purwaningrum Y. Pemanfaatan kandungan metabolit sekunder pada tanaman kunyit dalam mendukung peningkatan pendapatan masyarakat. Kultivasi. 2018;17. https://doi.org/10.24198/kultivasi.v17i1.15669
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
