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ABSTRACT

Background: Indonesia's tropical location results in intense UV exposure, necessitating effective photoprotective
agents. Phycocyanin from Spirulina platensis shows promise as a natural sunscreen ingredient, yet systematic
evaluation of its photostability across concentrations remains limited.

Objectives: To evaluate phycocyanin stability and antioxidant activity under UV-A and UV-B irradiation across
different concentrations.

Methods: Phycocyanin (200, 250, 300, and 350 ppm) was exposed to UV-A (365 nm, 2.8 mW/cm?) and UV-B
(312 nm, 3.2 mW/cm?) irradiation for up to 30 minutes. Pigment concentration and DPPH radical scavenging
activity were measured using UV-Vis spectrophotometry.

Results: Phycocyanin exhibited concentration-dependent stability, with 300-350 ppm demonstrating optimal
performance. UV-B caused greater degradation than UV-A, with concentration losses of 14.19-43.43 ppm (UV-B)
versus 6.85-16.63 ppm (UV-A) after 30 minutes. Antioxidant activity decreased minimally under UV-A (<1.85%)
but more substantially under UV-B (<1.97%). The 350 ppm concentration showed highest stability and antioxidant
retention (98.9% and 98.0%, respectively).

Conclusion: The 300-350 ppm range represents the optimal concentration for photoprotective applications,
supporting phycocyanin's potential as a natural sunscreen ingredient.
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Introduction in tropical regions experiencing high solar intensity.
While melanin provides natural photoprotection,
excessive UV exposure can induce hyperpigmentation
and cellular damage [5] Sunscreens offer additional

defense through UV filters that absorb, reflect,

Ultraviolet (UV) radiation from sunlight is
classified by wavelength into UV-C (270-290 nm),
UV-B (290-320 nm), and UV-A (320-400 nm). While
the Earth's ozone layer largely absorbs UV-C radiation,

both UV-A and UV-B penetrate the atmosphere
and pose significant health risks, particularly to
human skin [1,2]. Both wavelengths contribute to
sunburn, actinic keratosis, premature aging, and
carcinogenesis [3]. UV-B is primarily responsible for
erythema and exhibits 1,000-10,000 times greater
carcinogenic potential than UV-A, whereas UV-A
penetrates deeper into the dermis, contributing
to photoaging and photocarcinogenesis [4].
Although the Montreal Protocol has partially
mitigated ozone depletion since 1987, UV exposure
remains a critical public health concern, particularly
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or scatter radiation, with effectiveness measured
by Sun Protection Factor (SPF), which quantifies
protection against UV-B-induced erythema [6].
Modern photoprotective formulations increasingly
incorporate antioxidants to neutralize reactive
oxygen species (ROS) generated by UV exposure,
thereby reducing oxidative stress, protecting cellular
macromolecules, and promoting skin regeneration
and collagen synthesis [7-9].

Natural antioxidant sources, particularly

microalgae, have attracted increasing attention
for cosmetic and pharmaceutical applications.


https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.32889/actabioina.226
http://orcid.org/0009-0004-5202-4378
http://orcid.org/0000-0002-4028-5747
http://orcid.org/0009-0004-9683-2721
mailto:heli%40upi.edu?subject=
https://crossmark.crossref.org/dialog/?doi=10.32889/actabioina.226&domain=pdf

Phycocyanin photostability by concentration

Indonesia harbors over 2,060 microalgae species,
representing a biodiversity hotspot for bioactive
metabolites [10-13]. Among these, Spirulina platensis
is widely distributed and thrives in alkaline waters
(pH 8-11) at 35-40°C [14]. This cyanobacterium
is rich in proteins, essential fatty acids, vitamins,
and minerals, exhibiting antiviral, antioxidant, anti-
inflammatory, and immunomodulatory activities [15].

As a photosynthetic organism, S. platensis produces
chlorophylls, carotenoids, and phycobiliproteins,
with phycocyanin being the most abundant pigment.
Phycocyanin is a blue phycobiliprotein widely used
as a natural food and cosmetic colorant, exhibiting
multiple biological activities including antioxidant,
anti-inflammatory, anticancer, and hepatoprotective
effects [16-18]. Structurally, phycocyanin consists
of an apoprotein bound to phycocyanobilin, an
open-chain tetrapyrrole chromophore responsible
for its characteristic blue color and antioxidant
properties [19]. In cyanobacteria, phycocyanin
functions in light-harvesting complexes alongside
chlorophyll and carotenoids [20].

Previous study has demonstrated that UV
radiation affects cyanobacterial pigment biosynthesis,
with UV-A reducing pigment production and UV-B
inducing protein degradation and significant
reductions in phycocyanin and phycoerythrin
levels [21]. Although research has demonstrated
photoprotective effects of Spirulina extracts in
cellular models [22] and assessed phycocyanin
stability using spectrophotometric methods [23],
systematic evaluation of purified phycocyanin
across multiple concentrations remains limited.
Most studies examining UV stability have focused
on single concentrations or absorbance changes
without quantifying actual concentration loss or
functional antioxidant activity [24,25]. Moreover,
the influence of phycocyanin concentration on
photostability has not been systematically addressed,
despite concentration being a critical factor in
sunscreen formulation efficacy [26].

The growing consumer demand for natural
and sustainable cosmetic ingredients, combined
with increasing awareness of synthetic chemical
risks, has created market opportunities for plant-

and algae-derived photoprotective compounds.
Phycocyanin's dual functionality—both as a UV-
absorbing pigment and as an antioxidant—positions
it as a promising candidate for next-generation
sunscreen formulations. However, translating
laboratory findings into commercial applications
requires establishing optimal concentration
ranges that balance photoprotection, stability,
and formulation compatibility.

This study investigates the photostability of
purified phycocyanin extracted from S. platensis under
controlled UV-A and UV-B irradiation by monitoring
both pigment concentration and antioxidant activity
(DPPH radical scavenging capacity) across different
concentrations (200, 250, 300, and 350 ppm). By
identifying the concentration range that optimally
maintains phycocyanin integrity and biological
activity under UV exposure, this work provides
fundamental insights into its suitability as a natural
photoprotective agent and establishes evidence-based
guidelines for sunscreen formulation development.

Methods
Phycocyanin extraction and purification

Phycocyanin was extracted using a modified
maceration method [23]. Spirulina platensis biomass
(5 g), obtained from the Department of Biology,
Padjadjaran University, Indonesia, was mixed
with phosphate buffer (100 mL, pH 7.0, 1:20
w/v) prepared using monosodium phosphate and
disodium hydrogen phosphate (Merck, Darmstadyt,
Germany). The mixture was stirred at 4°C for
20 minutes, incubated at -4°C for 20 minutes,
then centrifuged at 3,500 rpm (1,200 x g) for
20 minutes. The supernatant was stored at —-4°C
in amber glass containers.

Purification employed ammonium sulfate
precipitation with modifications [27]. Sequential
saturation at 25% and 50% (w/v) using ammonium
sulfate (analytical grade, Merck) separated the
pigments, with the blue precipitate from 50%
saturation collected, re-dissolved in phosphate buffer
(pH 7.0), and dialyzed through cellulose membrane
(12-14 kDa MWCO) for six days at 4°C with daily
buffer replacement. Complete ammonium sulfate
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removal was confirmed using 1% BaCl, solution
(Merck). The dialyzed solution was freeze-dried
at =50°C and 0.1 mbar for 48 hours and stored
at -20°C until use.

Phycocyanin stability under UV irradiation

Phycocyanin stability was evaluated following
established methods with modifications [21].
Purified phycocyanin was dissolved in phosphate
buffer (pH 7.0) to obtain concentrations of
200, 250, 300, and 350 ppm (0.2-0.35 mg/
mL). Samples (3 mL) in quartz cuvettes were
placed 15 cm beneath UV lamps in a darkened
chamber with temperature actively monitored
using a digital thermometer and maintained at 25
+ 2°C throughout the exposure period. Samples
were exposed to either UV-A irradiation (365
nm, 2.8 mW/cm?) provided by T5 8W UV lamps
(EVACO, Bandung, Indonesia) or UV-B irradiation
(312 nm, 3.2 mW/cm?) using TL 18W UV lamps
(Exoterra Reptile UVB 150, Rolf C. Hagen Corp.,
USA) for 15, 20, 25, and 30 minutes. Irradiance
was verified using a UV340A radiometer (Lutron
Electronic Enterprise Co., Ltd., Taiwan). Non-
irradiated controls were wrapped in aluminum
foil and maintained under identical conditions.

Absorbance was measured at 620 nm and 652
nm against phosphate buffer blank using a Shimadzu
UV-2700i spectrophotometer (Shimadzu Corporation,
Kyoto, Japan). Phycocyanin concentration was
calculated using the equation:

Phycocyanin (mg/mL) = Ao - 05'27: God (1
where Ag,0 and Ags, represent absorbance values
at 620 nm and 652 nm, respectively. Identical
procedures were followed for both UV-A and
UV-B exposure experiments. Each concentration
was tested in triplicate across three independent
experimental runs using separate phycocyanin

extractions.

Antioxidant stability assessment

DPPH radical scavenging activity was measured
following established methods with modifications

[28]. UV-irradiated phycocyanin samples (4 mL)
were mixed with freshly prepared DPPH solution
(2 mL, 40 ppm in methanol 299.8%, Merck) using
2,2-diphenyl-1-picrylhydrazyl (Sigma-Aldrich, St.
Louis, MO, USA) in amber vials, vortexed for 10
seconds, and incubated in darkness at 25 * 2°C for
30 minutes. Absorbance was measured at 517 nm
using the Shimadzu UV-2700i spectrophotometer
with methanol as blank. DPPH radical scavenging
activity (inhibition percentage) was calculated
using the equation:

A - A
Q — Zeontrol sample 100% (2)

control

where A_control represents the absorbance of
DPPH solution mixed with phosphate buffer only
(without phycocyanin), and A_sample represents
the absorbance of DPPH solution mixed with
phycocyanin sample. Each sample was analyzed
in triplicate across three independent experimental
runs.

Statistical analysis

Data are expressed as mean * standard deviation
(SD) from three independent experiments (n = 3).
Prior to analysis, normality was assessed using the
Shapiro-Wilk test, and homogeneity of variance was
evaluated using Levene's test. One-way analysis of
variance (ANOVA) with Tukey's post hoc test was
performed using SPSS 26.0 (IBM Corp., Armonk,
NY, USA) with statistical significance set at p <
0.05. Graphs were prepared using GraphPad Prism
9.0 (GraphPad Software, USA).

Results

Phycocyanin pigment stability under UV-A
irradiation

Phycocyanin exhibited concentration-dependent
stability under UV-A exposure, with higher
concentrations demonstrating superior pigment
retention (Figure 1). All concentrations showed
gradual decline over the 30-minute exposure
period, with concentration losses ranging from
4.58-14.12 ppm after 15 minutes and 6.85-
16.63 ppm after 30 minutes (Table 1). The 350
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Figure 1. Effect of UV-A irradiation on phycocyanin concentration at 200-350 ppm over 30 minutes. Data represent mean +
SD (n = 3). Different letters indicate significant differences (p < 0.05) by Tukey's test.

Table 1. Phycocyanin concentration decrease after UV-A exposure

Concentration (ppm)

Decrease after 15 min (ppm)

Decrease after 30 min (ppm) % Loss (30 min)

200 5.88 + 0.42
250 1412 + 1.08*
300 13.23 £+ 0.95%
350 4.58 + 0.38

8.98 + 0.65 4.5
16.63 £ 1.21* 6.7
1466 = 1.03* 4.9
6.85 + 0.51 2.0

Note: Data represent mean = SD (n = 3). Asterisks indicate significant difference from 350 ppm (p < 0.05).

ppm sample demonstrated the highest stability
with only 6.85 ppm reduction after 30 minutes,
representing 2.0% total loss. In contrast, the 250
ppm concentration showed the greatest decrease
(16.63 ppm, 6.7% loss), followed by 300 ppm
(14.66 ppm, 4.9% loss). The 200 ppm sample
exhibited intermediate stability with 8.98 ppm loss
(4.5% loss). Statistical analysis revealed significant
differences between the 350 ppm and 250 ppm
groups (p < 0.01), while no significant difference
was observed between the 200 ppm and 350
ppm groups (p > 0.05).

Phycocyanin pigment stability under UV-B
irradiation

UV-B irradiation induced substantially greater
degradation than UV-A, with a clear concentration-
dependent protective effect evident across all
exposure times (Figure 2). After 30 minutes,
concentration losses ranged from 14.19 ppm

(350 ppm) to 43.43 ppm (200 ppm), representing
4.1% and 21.7% reductions, respectively (Table
2). The 200 ppm sample showed approximately
3-fold greater degradation than 350 ppm (p <
0.001), with rapid decline observable within the
first 15 minutes (13.14 ppm loss). Intermediate
concentrations (250 and 300 ppm) exhibited
comparable decreases after 15 minutes (6.54 and
6.41 ppm, respectively), but diverged after 30
minutes, with 300 ppm experiencing 10% greater
loss than 250 ppm (33.78 vs. 30.71 ppm, p <
0.05). The 350 ppm concentration maintained the
highest integrity throughout the exposure period,
with only 14.19 ppm decrease after 30 minutes.

Antioxidant stability under UV-A irradiation

DPPH radical scavenging activity decreased
gradually under UV-A exposure, with reductions
ranging from 0.20-0.88% after 15 minutes and
0.80-1.85% after 30 minutes (Figure 3, Table 3).
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Figure 2. Effect of UV-B irradiation on phycocyanin concentration at 200-350 ppm over 30 minutes. Data represent mean +
SD (n = 3). Different letters indicate significant differences (p < 0.05) by Tukey's test.

Table 2. Phycocyanin concentration decrease after UV-B exposure

Concentration (ppm)

Decrease after 15 min (ppm)

Decrease after 30 min (ppm) % Loss (30 min)

200 13.14 £ 1.15%%*
250 6.54 + 0.58*
300 6.41 + 0.52*
350 4.63 + 0.41

4343 £ 2.87%%* 21.7
30.71 = 1.92%* 12.3
33.78 + 2.15%* 1.3

14.19 + 1.08 4.1

Note: Data represent mean = SD (n = 3). Asterisks indicate significance vs 350 ppm: *p < 0.05, **p < 0.01, ***p < 0.001

Initial antioxidant activities before UV exposure
were concentration-dependent: 63.2% (200 ppm),
66.8% (250 ppm), 70.3% (300 ppm), and 72.1%
(350 ppm). After 30 minutes UV-A irradiation, the
350 ppm sample retained highest activity (71.3%,
1.1% decrease), while 250 ppm showed greatest
reduction to 64.9% (2.8% decrease). Interestingly,
300 ppm exhibited larger decline (1.39%) than
250 ppm after 30 minutes despite higher initial
activity, suggesting non-linear response patterns.
Statistical analysis indicated no significant differences
between groups after 15 minutes (p > 0.05), but
significant variation emerged at 30 minutes between
350 ppm and other concentrations (p < 0.05).

Antioxidant stability under UV-B irradiation

UV-B exposure caused more pronounced
antioxidant depletion than UV-A, though decreases
remained relatively modest (Figure 4). After 30
minutes, DPPH inhibition decreased by 1.41-1.97%

across concentrations (Table 4). The 200 ppm
sample experienced greatest decline from 63.2%
to 61.3% (1.93% reduction, p < 0.01 vs 350
ppm), while 350 ppm maintained 70.7% activity
(1.41% reduction, 98.0% retention). Contrary to
expectations, 300 ppm showed slightly greater
activity loss (1.97%) than 250 ppm (1.55%) after
30 minutes, despite initially higher antioxidant
capacity (70.3% vs 66.8%). This pattern mirrors
observations under UV-A and suggests concentration-
specific photochemical responses. All groups showed
significant differences from 350 ppm at 30 minutes
(p < 0.05), confirming superior antioxidant stability
at highest concentration tested.

Comparative analysis of UV-A and UV-B effects

Table 5 summarizes the comparative effects
of UV-A and UV-B irradiation on phycocyanin
stability and antioxidant activity across all tested
concentrations. UV-B consistently induced 2-3

Acta Biochimica Indonesiana 8(2):226 | https://doi.org/10.32889/actabioina.226


https://doi.org/10.32889/actabioina.226

Phycocyanin photostability by concentration

200 ppmr 250 ppm
74 - 300 ppnr 350 ppm
72
70
g 68-.:
g 66- T
L 64
=
c 4
62+
60 —\
584
0 5 10 15 20 25 30

Time (minutes)

Figure 3. DPPH radical scavenging activity of phycocyanin under UV-A irradiation at 200-350 ppm. Data represent mean *
SD (n = 3). Different letters indicate significant differences (p < 0.05) by Tukey's test.

Table 3. Decrease in DPPH inhibition percentage after UV-A exposure

Concentration (ppm) Decrease after 15 min (%)

Decrease after 30 min (%) Retention (30 min, %)

200 0.28 + 0.03
250 0.25 = 0.02
300 0.88 + 0.07
350 0.20 = 0.02

1.54 = 0.12 97.6
1.85 £ 0.15% 97.2
1.39 = 0.11 98.0
0.80 + 0.06 98.9

Note: Data represent mean = SD (n = 3). Asterisk indicates significant difference from 350 ppm (p < 0.05)

fold greater pigment degradation than UV-A at
all concentration levels. The protective effect
of higher concentrations was more pronounced
under UV-B exposure, with 350 ppm showing
5.3-fold better stability than 200 ppm under
UV-B compared to only 1.9-fold better stability
under UV-A. Antioxidant activity retention patterns
were similar between UV-A and UV-B conditions,
though UV-B caused slightly greater functional
decline. The concentration-dependent protective
effect was evident for both pigment stability and
antioxidant retention, with optimal performance
consistently observed at 300-350 ppm under both
UV conditions.

Discussion

This study provides a systematic evaluation of
phycocyanin photostability under UV-A and UV-B
irradiation by quantifying both concentration loss

and antioxidant activity across multiple pigment
concentrations. The key findings demonstrate that:
(i) phycocyanin exhibits concentration-dependent
photostability, with 300-350 ppm showing optimal
performance; (ii) UV-B causes 2-3 fold greater
degradation than UV-A across all concentrations;
(iii) antioxidant activity is relatively preserved
under both UV conditions, with retention rates
exceeding 96%; and (iv) concentrations below
200 ppm and above 350 ppm show suboptimal
stability and efficacy. These findings establish
critical concentration guidelines for developing
phycocyanin-based photoprotective formulations.

assessed
phycocyanin stability primarily through absorbance
measurements [23], the present work advances
understanding by directly quantifying concentration
changes and functional antioxidant capacity. Earlier
studies have generally examined single phycocyanin
concentrations, leaving the influence of varying

While previous research has
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Figure 4. DPPH radical scavenging activity of phycocyanin under UV-B irradiation at 200-350 ppm. Data represent mean *
SD (n = 3). Different letters indicate significant differences (p < 0.05) by Tukey's test.

Table 4. Decrease in DPPH inhibition percentage after UV-B exposure.

Concentration (ppm) Decrease after 15 min (%)

Decrease after 30 min (%) Retention (30 min, %)

200 0.48 + 0.04**
250 0.26 = 0.02
300 0.62 + 0.05%
350 0.10 = 0.01

1.93 £ 0.16** 96.9
1.55 £ 0.13* 97.7
1.97 £ 0.17** 97.2
141 = 0.11 98.0

Note: Data represent mean = SD (n = 3). Asterisks indicate significance vs 350 ppm: *p < 0.05, **p < 0.01

Table 5. Comparative effects of UV-A and UV-B on phycocyanin after 30 minutes exposure

Concentration (ppm) UV-A Loss UV-B Loss UV-B/l.JV-A UY—A UY-B
(ppm) (ppm) Ratio Retention (%) Retention (%)

200 8.98 4343 4.8 97.6 96.9

250 16.63 30.71 1.8 97.2 97.7

300 14.66 33.78 23 98.0 97.2

350 6.85 14.19 2.1 98.9 98.0

Note: Loss values represent pigment concentration decrease; Retention values represent antioxidant activity preservation

pigment levels on photoprotective performance
unexplored [24,25]. By evaluating a concentration
range from 200 to 350 ppm, this research identifies
optimal levels for photoprotective applications
and reveals non-linear stability patterns that have
important formulation implications.

UV-A irradiation caused minimal concentration
reduction (6.85-16.63 ppm over 30 minutes),
consistent with reports that UV-A exerts limited
direct effects on phycobiliproteins in cyanobacteria

such as Lyngbya sp., which showed no significant
degradation after five hours of exposure [21].
Rather than directly degrading pigments, UV-A
primarily suppresses biosynthesis by inhibiting
amino acid synthesis in photosynthetic organisms
[29]. This mechanism explains why UV-A-induced
degradation in purified phycocyanin solutions
remains relatively modest—the purified pigment
lacks the biosynthetic machinery that UV-A typically
affects. The concentration-dependent protection
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observed suggests that higher phycocyanin
concentrations may provide enhanced shielding
through increased UV absorption cross-sections,
reducing photon penetration and subsequent
photochemical damage to individual molecules.

In contrast, UV-B irradiation significantly
compromised phycocyanin stability, with concentration
losses reaching 14.19-43.43 ppm after 30 minutes,
representing 2-3 fold greater degradation than UV-A.
This heightened susceptibility stems from UV-B's
higher photon energy (approximately 4.0-4.3 eV
compared to UV-A's 3.1-3.9 eV), which induces both
direct photochemical breakdown of the tetrapyrrole
chromophore and indirect oxidative damage mediated
by reactive oxygen species (ROS) [21]. Phycocyanin's
chromophore groups can act as photosensitizers,
enhancing ROS generation under UV-B exposure and
leading to structural alterations including protein
denaturation, chromophore bleaching, and peptide
bond cleavage that collectively impair function [30].
The 350 ppm concentration demonstrated 5.3-fold
better stability than 200 ppm under UV-B (Table
5), suggesting that higher pigment concentrations
provide mutual photoprotection through enhanced
light screening and potentially through radical
scavenging by neighboring molecules.

The differential UV sensitivity observed has
direct relevance to skin photobiology and sunscreen
development. UV-A (320-400 nm) penetrates
deeply into the dermis and promotes melanin
oxidation, causing immediate pigment darkening
as a short-term photoprotective response [31,32].
Additionally, UV-A generates ROS that damage
collagen and elastin fibers, leading to photoaging
characterized by wrinkles, loss of elasticity, and
solar elastosis. Conversely, UV-B (290-320 nm)
penetrates primarily the epidermis but exerts
more damaging biological effects due to higher
photon energy, causing direct DNA damage through
cyclobutane pyrimidine dimer formation, sunburn,
erythema, and mutagenic events that can lead to
skin cancer [33]. Since UV-B-induced erythema
forms the basis for Sun Protection Factor (SPF)
determination, phycocyanin's concentration-
dependent resistance to UV-B degradation directly
supports its potential as a natural photoprotective

ingredient. The superior stability at 300-350 ppm
suggests these concentrations would maintain
photoprotective efficacy throughout typical sun
exposure periods (2-4 hours), a critical requirement
for practical sunscreen applications.

Antioxidant activity decreased modestly under
both UV conditions, with reductions of 0.80-1.85%
(UV-A) and 1.41-1.97% (UV-B) after 30 minutes,
corresponding to retention rates of 97.2-98.9%
and 96.9-98.0%, respectively. This functional
preservation reflects phycocyanin's chromophore
phycocyanobilin, an open-chain tetrapyrrole that
efficiently donates hydrogen atoms to neutralize
free radicals such as DPPH through its conjugated
double-bond system and hydroxyl groups [19,34].
The mechanism involves hydrogen atom transfer
from phycocyanobilin to the DPPH radical, forming a
stable reduced DPPH molecule and a phycocyanobilin
radical that is stabilized through resonance
delocalization. However, prolonged UV-B exposure
generates cumulative ROS including superoxide
anions (0,¢7), singlet oxygen (*0;), and hydroxyl
radicals (¢OH) that eventually overwhelm antioxidant
defenses [35]. Beyond pigment degradation, this
oxidative imbalance induces protein modifications
including carbonylation, oxidation of aromatic amino
acids (tryptophan, tyrosine, histidine), and disulfide
bond disruption that impair cellular function and
contribute to photodamage [36,37].

The concentration-dependent stability pattern
reveals a critical functional window for formulation
development. At 200 ppm, rapid degradation
occurred under both UV conditions, indicating
insufficient molecular resilience and inadequate
light-screening capacity. The 250 ppm concentration
provided borderline performance with inconsistent
stability between UV-A and UV-B exposure. At 300
ppm, stability improved substantially but showed
slight irregularities in antioxidant retention patterns.
Optimal performance emerged at 300-350 ppm,
where phycocyanin maintained both pigment
integrity and strong antioxidant activity under
UV stress. Importantly, preliminary observations at
concentrations exceeding 350 ppm (400 ppm, data
not shown) suggested potential pigment aggregation
and reduced DPPH scavenging efficiency. Such
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aggregation can cause spectroscopic interference
in DPPH assays, diminish bioavailability due to
reduced surface area for radical interaction, and
create formulation challenges including precipitation,
color inconsistency, and reduced skin penetration
[38]. Therefore, the effective concentration range of
300-350 ppm provides optimal balance between
photostability, antioxidant performance, formulation
stability, and practical application feasibility.

Comparing these findings to commercial
sunscreen standards provides perspective on
phycocyanin's potential. Typical organic UV filters
such as avobenzone and octinoxate are formulated
at concentrations of 2-3% (20,000-30,000 ppm) to
achieve SPF 15-30 protection. While phycocyanin at
300-350 ppm (0.03-0.035%) represents significantly
lower concentrations, it should be considered as
a complementary antioxidant ingredient rather
than a primary UV filter replacement. Modern
broad-spectrum sunscreens increasingly incorporate
antioxidants (vitamin C, vitamin E, niacinamide) at
concentrations of 0.01-0.1% to neutralize ROS and
provide secondary photoprotection [7-9]. Within this
context, phycocyanin at 300-350 ppm falls within
the optimal range for antioxidant photoprotection
while offering the additional benefit of natural
blue pigmentation that could enhance product
aesthetics and consumer appeal in the growing
natural cosmetics market.

Several strategies could further enhance
phycocyanin stability in sunscreen formulations.
High-pressure processing (400-600 MPa) has
been shown to improve storage stability by
inducing conformational changes that protect the
chromophore from oxidation [39]. Polysaccharides
(chitosan, alginate, carrageenan) and sugar alcohols
(sorbitol, mannitol, glycerol) provide thermal and
oxidative protection through hydrogen bonding
interactions that stabilize protein structure and
scavenge free radicals [25,40]. Encapsulation
techniques including nanoemulsions, liposomes,
and biopolymer-based carriers (whey protein,
zein, alginate beads) offer promising protection
against UV-induced degradation by creating
physical barriers that limit light penetration and
oxygen diffusion while improving skin adhesion

and controlled release [41-44]. Integration of
such stabilization approaches with the optimal
300-350 ppm concentration identified here could
substantially improve phycocyanin's commercial
viability as a natural photoprotective agent.

Figure 5 provides a schematic representation
of the concentration-dependent photostability and
antioxidant activity patterns observed in this study:.
The visualization illustrates how stability and
antioxidant retention increase with concentration
from 200 to 350 ppm, with UV-B consistently causing
greater degradation than UV-A across all levels.
The optimal performance zone at 300-350 ppm
represents the balance point where photoprotection
is maximized without encountering aggregation-
related efficacy loss that may occur at higher
concentrations. This conceptual framework can
guide formulation scientists in selecting appropriate
phycocyanin concentrations for specific product
applications, considering factors such as desired SPF
enhancement, antioxidant capacity, cost constraints,
and regulatory requirements.

Several limitations should be acknowledged.
First, the purification method employed (ammonium
sulfate precipitation) may not achieve the purity
levels obtainable through column chromatography,
potentially leaving residual proteins or metabolites
that influence photostability measurements.
However, this method better represents industrial-
scale production conditions, enhancing the practical
relevance of findings. Second, this study examined
only 30-minute UV exposure periods, whereas typical
outdoor sun exposure extends 2-4 hours or longer.
Extended exposure studies are needed to assess
long-term stability and establish degradation kinetics
for realistic use conditions. Third, all experiments
were conducted in phosphate buffer solution rather
than actual cosmetic formulations, where pH,
emulsifiers, preservatives, and other ingredients
may significantly affect phycocyanin stability and
activity. Fourth, the DPPH assay, while widely
used, represents only one measure of antioxidant
capacity; additional assays (ABTS, ORAC, FRAP)
would provide more comprehensive antioxidant
profiles. Finally, in vitro photostability does not
predict in vivo photoprotection—human clinical
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Concentration-dependent Stability of Phycocyanin under UVA and UVB
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Figure 5. Schematic representation of phycocyanin stability and

antioxidant activity under UV-A and UV-B irradiation across

different concentrations (200-350 ppm). The shaded zone (300-350 ppm) represents the optimal concentration range for

photoprotective applications. Higher concentrations (>350 ppm,

due to aggregation effects.

trials measuring SPF, immediate pigment darkening
(IPD), and persistent pigment darkening (PPD)
are essential to validate phycocyanin's practical
efficacy as a sunscreen ingredient.

This study establishes that phycocyanin
photostability and antioxidant capacity follow
concentration-dependent rather than strictly linear
patterns, with the 300-350 ppm range offering
optimal photoprotection under both UV-A and
UV-B exposure. Lower concentrations (<200 ppm)
exhibited rapid degradation and weak antioxidant
performance, while excessively high levels (=400
ppm, preliminary observations) showed diminished
efficacy likely due to aggregation and assay
interference. UV-B induced significantly greater
damage than UV-A, consistent with its higher
photon energy and stronger oxidative effects.
These findings emphasize the importance of
concentration optimization alongside molecular
stabilization strategies to preserve phycocyanin
functionality under UV exposure. The work
advances understanding of phycocyanin as
a natural bioactive pigment and supports its
development as a safe, effective antioxidant
and photoprotective compound for sunscreen

indicated by dashed lines) show diminished performance

applications, particularly as a complementary
ingredient to enhance the antioxidant capacity
of broad-spectrum formulations.

The concentration-dependent stability pattern
reveals a critical functional window. At 200
ppm, rapid degradation occurred even before
UV exposure, indicating insufficient molecular
resilience. The 250 ppm concentration provided
borderline performance, while 300 ppm showed
improved but inconsistent stability. Optimal
performance emerged at 300-350 ppm, where
phycocyanin maintained both pigment integrity
and strong antioxidant activity under UV stress.
Importantly, concentrations exceeding 350 ppm
may prove counterproductive, as preliminary
observations at 400 ppm suggested pigment
aggregation and reduced DPPH scavenging
efficiency. Such aggregation can cause assay
interference and diminish bioavailability, as
reported in studies of phycocyanin extraction
and purification [38]. Therefore, selecting an
effective concentration range between 300 and
350 ppm provides optimal balance between
stability, antioxidant performance, and formulation
reliability.
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Several strategies could further enhance
phycocyanin stability in sunscreen formulations.
High-pressure processing improves storage stability
[39], while polysaccharides and sugar alcohols
provide thermal and oxidative protection [25,40].
Encapsulation techniques including nanoemulsions,
liposomes, and biopolymer-based carriers offer
promising protection against UV-induced degradation
[41-44]. Integration of such stabilization approaches
with the optimal 300-350 ppm concentration
identified here could substantially improve
phycocyanin's commercial viability as a natural
photoprotective agent.

This study establishes that phycocyanin
photostability and antioxidant capacity follow
concentration-dependent rather than linear
patterns, with the 300-350 ppm range offering
optimal photoprotection. Lower concentrations
(<200 ppm) exhibited rapid degradation and weak
antioxidant performance, while excessively high
levels (2400 ppm) showed diminished efficacy
likely due to aggregation and assay interference.
These findings emphasize the importance of
concentration optimization alongside molecular
stabilization strategies to preserve phycocyanin
functionality under UV exposure. The work advances
understanding of phycocyanin as a natural bioactive
pigment and supports its development as a safe,
effective antioxidant and photoprotective compound
for sunscreen applications.

Conclusion

This study establishes that phycocyanin from
Spirulina platensis exhibits concentration-dependent
photostability, with 300-350 ppm providing optimal
performance under both UV-A and UV-B irradiation.
UV-B induced 2-3 fold greater pigment degradation
than UV-A, while antioxidant activity remained
well-preserved (>96% retention) across all tested
concentrations. These findings provide evidence-
based concentration guidelines for formulating
phycocyanin as a natural photoprotective
and antioxidant agent in sunscreen products.
Future research should focus on stabilization
strategies including encapsulation technologies,

comprehensive formulation optimization in actual
cosmetic matrices, and in vivo efficacy and safety
evaluation to advance commercial development.
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